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Abstract. Connected partitions in two-dimensional lattices naturally arise in studying the
cluster configurations of a large class of dynamical systems. We introduce a factorization
into dichotomic factors allowing a meaningful implementation of the partition algebra. This
factorization proves useful, in particular, in the reduction process between couples of partitions.
The time-series approach to the complexity, based on the metric properties of the partition
spaces, may consequently be extended from one- to two-dimensional processes. We check the
efficiency of this formalism on the spin system simulated by the Q2R automaton.

1. The problem

The problem of factorizing finite measurable partitions into dichotomic partitions arises
in the reduction process of rational partitions [1, 2]. In fact, the approach described in
[2] is general, but its implementation fits only one-dimensional discrete configurations, i.e.
strings. The procedure, implying a lot of interesting computational issues, is algorithmically
very simple in that case, while its extension to two-dimensional spaces is a non-trivial
one. Handling with partitions requires comparisons of boundaries of measurable sets,
that are points in one dimension, and curves (possibly disconnected) in two, with a
dramatic growth of operational complication. This has many facets: the very definition
of ‘elementary factors’, the conversion of the partition algebra into computable procedures,
and the correspondence of the introduced factorization to possible meaningful features of
the objects under investigation.

After recalling basic definitions in section 2, we turn our attention to lattices, and in
section 3 we give a complete solution to the problem within the class of two-dimensional
connectedpartitions, by far the most important. The connection with complexity estimates
is recalled in section 4, and in section 5 the efficiency of this approach and solution is
checked on a concrete example, admitting easy generalizations.

2. Partitions, factors and reduction

For self-consistency, we recall some basic facts, notations and results about partitions, as
given in [2].

In a probability space(M ,M, µ), a partitionα of M , is an exhaustive, finite collection
of disjoint measurable subsets, called ‘atoms’. The setZ of all partitions is a metric space,
with the distance

ρ(α, β) = H(α|β)+H(β|α) (1)
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whereH(α|β) is the conditional Shannon entropy ofα with respect toβ. A partition α′

is a factor of α if α refinesα′: therefore the atoms ofα′ are built up with atoms ofα,
and we writeα′ 6 α. This idea of a factor, introducing a partial order inZ, is consistent
with the following notion of a product: ifα andβ are partitions, their productγ = α ∨ β
(noted also asγ = αβ) is the coarsest partition among those refining bothα andβ. Atoms
of γ consist of non-empty intersections ofα and β atoms. The unit partitionν, having
M as an atom, is a trivial factor for every partition. A factor isdichotomicwhen it has
two atoms (a set and its complement inM ). It is ‘prime’ in the sense that it does not
admit non-trivial subfactors. Ifα hasn atoms, the familyD(α) of all its dichotomic factors
consists of 2n−1−1 elements. Sincen may easily be ‘large’ (say, some thousand in concrete
examples), the familyD(α) cannot be handled directly. Moreover,D(α) generatesα (i.e.
∨αk = α for αk ∈ D(α)), but most of the factors are redundant for this purpose. Therefore,
we wish to select an essentially restricted subclassE(α) ⊆ D(α), whose elements shall be
called ‘elementary factors’ ofα. As discussed in [2], a criterionP extractingE(α) from
D(α) must satisfy four conditions: (1) universality; (2) completeness; (3) self-compatibility
and; (4) effectiveness. We shall briefly review these conditions later, referring to a defined
class of elementary factors.

The main reason for introducingE(α) is the reduction of common factors between two
partitions, in order to give evidence, as far as possible, as to their non-similar components.
This is done by a ‘reduction process’π working on couples of partitions:

(α′, β ′) = π(α, β) α′ 6 α, β ′ 6 β. (2)

The procedure is the following. Suppose the elementary factors classesE(α) have been
defined for everyα. If σ = α ∧ β denotes the greatest common factor for a coupleα and
β, two classesE(α|σ) andE(β|σ) are then introduced as those subcollections ofE(α) and
E(β) which are ‘prime’ withσ ;

αk ∈ E(α|σ)⇒ αk ∈ E(α) and αk ∧ σ = ν (3)

and the same withβ. The ‘reduced’ partitionsα′ 6 α andβ ′ 6 β in (2) are then defined:

α′ = ∨kαk αk ∈ E(α|σ)
β ′ = ∨jβj βj ∈ E(β|σ).

(4)

The analogy with the cancellation of common factors in fractions motivates the term ‘rational
partitions’ for reduced couples. However, since a uniquely defined factorization does not
exist for partitions, the reductionπ depends on the classE(α). Our problem is therefore to
defineE(α) explicitly, in the case of interest, with the purpose of optimizing the reduction
in an easily computable way.

There always exists at least one solution to the problem of defining elementary factors:
the classS(α) of ‘simple’ factors, each of them constituted by one single atom and its
complement. However, even if conceptually simple, such a choice is non-practical for
computer manipulations and (especially in more than one dimension) it is very severe with
respect to the requirements of an effective reduction. We shall therefore introduce another
factorization, easier to handle and more sensitive thanS(α) to the structural features of the
processes we are interested in.

3. The abstract lattice scheme

For definiteness, letM be a square lattice ofN×N sites (or knots),Kr anr-values alphabet
(typically, Kr is K2 ≡ {0, 1}). A configuration is a functiona: M → Kr , assigning a
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Figure 1. Example of clusters out of a configuration (a) and the related partition of the square
(b).

Figure 2. The external contour of atom B is through points 1-2-3-4-5-6-7-8-1; for C is 2-3-9-
10-2; for D is 4-5-11-12-4 and for A is the whole frame.

symbol chosen inKr to each sitexij ∈M . The setS of all configurations has therefore
cardinalityKN×N

r .
Assuming, as usual, that the knotsxij andxlk are next neighbours when|i−l|+|j−k| =

1, knots may be grouped into a defined subset when they are homogeneous (same value in
Kr ) through paths connecting next neighbours. Such a procedure determines a partition of
M (figure 1(a)), and it is consistent with a meaningful attitude in concrete problems, e.g. the
characterization of a state of a spin system through the distribution of magnetization clusters.
(For the two-dimensional Ising ferromagnet this approach goes back to Peierls [3], see also
[4].) The procedure is also meaningful for those evolution rules which require ‘differences’
between next neighbours, i.e. when the dynamics depends on the cluster contours.

In fact, in order to identify atoms and clusters, we think about paths joining the centres
of the adjacent ‘plaquettes’. An atom corresponding to an isolated knot, for instance, is
a square with one-step sides. Such contours determine a discretized partition of the dual
N ×N square, that for all practical purposes may be identified with the original partition of
labelled knots inM (figure 1(b)). Thus, atoms are connected, but not simply connected in
general, and their boundaries are (possibly multiple) paths. The number of included knots
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divided byN2 assigns a probability measure to each atom. Such a measure is the most
natural to introduce in general, even if it is conceivable that other probabilities may better fit
the features of particular processes. Generalizations to non-square lattices or planar graphs
are also possible.

We have established a map8 : S → Z, from the set of the lattice configurations
into the spaceZ of partitions of the discreteN × N square. The following statements are
straightforward.

S1. The map8 is many-to-one, because we obtain the same partitions by permutation
of symbols inKr , and it is ‘into’ because there are partitions that do not correspond to
any configuration. This is obvious, since disconnected partitions exist inZ. Moreover,
even considering connected partitions, the four-colours theorem says that there exist
configurations corresponding to arbitrary partitions only ifr > 4 in Kr .

S2. Every connected atom is identified by oriented boundaries. As usual, the positive
orientation is assumed counterclockwise, leaving the ‘internal’ region on the left; an atom
is bounded by one or more closed paths, but one and only one of them, the ‘external’ one,
is positively oriented.

S3. Contours may partially overlap when they refer to different atoms (see also S5
below), but they cannot cross, since the crossing would imply a non-empty intersection
(while atoms are always disjoint).

The following statements S4–S6 regard partitions when periodic boundary conditions
are not used: indeed, in such a case, the frame (i.e. the border of the square) plays a special
role.

S4. An external contour path may cross the frame only for an even number of times:
indeed, every such intersection switches the internal and external domains of the atom, that
would absurdly coincide after an odd number of switches.

S5. It is possible to modify the positive paths when they touch the frame, assuming
as an ‘external’ contour of a given atom the whole piece of the frame between the first
and the last intersection (obviously, this has some consequences only if there are more
than four crossing points). Other atoms touching the frame between these extreme points
must coherently be considered as internal to the given atom (see figure 2). This means that
positive contours may partially overlap in the same direction along the frame, in opposite
directions inside the square, and that the frame itself may be assumed as a contour. Without
this assumption, the external domain of a positive path touching the frame four times or
more would be disconnected. Another way of putting the same problem is as follows. If a
path is not completely internal, then necessarily it has two and only two endpoints on the
frame. Choosing a direction on this path means to define both the first and last endpoints and
the internal domain. Such an internal domain is assumed to be the whole region contained
by the path itself and the piece of frame between the last and first endpoints, independently
of other atoms possibly contained there.

S6. There is, therefore, a one-to-one correspondence between atoms and positive
contours; as to negative contours, they do not exist for simply connected atoms, otherwise
they are (possibly multiple and disconnected) paths.

Statements S1–S6 would remain true even considering partitions with disconnected
atoms, with obvious adaptations (e.g. positive contours would not be necessarily simple
curves).

Finally, returning to connected partitions, we have the following.
S7. The internal and external domains to every positive contour are simply connected

sets (note the role played by the assumption in S5 for non-periodical boundaries). Both of
them are constituted by one atom or union of atoms, and therefore they define a dichotomic
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factor of the original partition. This naturally introduces the factorization we are looking
for.

Definition. The classE(α) of theelementary factorsof α is constituted by partitions having
as atoms the internal and external domains of the positive paths ofα.

We must check the criterionP quoted above.
(1) Universality. This means thatE(α) may be defined for everyα. Obviously, there

are no limits in introducing such a class of factors for everyconnectedpartition. For
disconnected partitions (which we are not interested in) it all works the same, except for a
pathological possibility, occurring when the disconnected parts of an atomA, sayA′ and
A′′, are in the relationA′ ⊂ B ⊂ A′′ with respect to another atomB. In this case, both the
interior and exterior domains of a positive path intersectthe sameatom, and therefore do
not define a factor of the primitive partition. Corrections to the definition are possible, of
course, but we are not interested in such a generalization now.

(2) Completeness. This means thatE(α) must generateα, i.e.∨kαk = α for αk ∈ E(α).
Now, all contours have an interior, therefore they all occur as positive once: completeness
follows.

(3) Self-compatibility. IfF(α) is anarbitrary subcollection ofE(α), defineα′ = ∨αk
for αk ∈ F(α). From condition (1),E(α′) is also well defined. Of course, sinceα′

is generated byF(α), everyαk ∈ F(α) is also inD(α′). Self-compatibility means that
E(α′) ⊇ F(α). Such a property is checked in this case by induction. Taking into account
that the factors are labelled arbitrarily, letα1, α2 be two elementaryα-factors. The partition
α1,2 = α1 ∨ α2 has positive contours with a common piece, at most, because they cannot
cross (see S3 above). As a consequence, the elementary factors ofα1,2 areα1 andα2 selves.
Now, by induction, letα1...m = α1∨, . . . ,∨αm. The productα1...m ∨ αm+1 does not break
(for the same reasons) the positive paths already introduced; there is exactly one new path,
the one defining the factorαm+1. In other words, the elementary factors ofα1...m+1 are
exactlyα1, . . . , αm+1. This shows that, ifF(α) ⊆ E(α) andα′ = ∨kαk for αk ∈ F(α), then
E(α′) = F(α).

(4) Effectiveness. This requires that there are as many factors inE(α) as atoms inα
(restriction of redundance). As already observed (statement S6), in our case there are as
many positive contours as atoms. Note that (as for simple factors),n− 1 factors would be
sufficient to generateα, but this further simplification is useless in practice.

This factorization generalizes the one used in [2] for one-dimensional partitions (in
that case, left extremes of segments may be seen as ‘external’). Hence, in principle, we
have a suggestion for extensions to higher-dimensional lattices (even if the computational
charge exceeds our present possibilities): it would be sufficient to collect the ‘external’
hypersurfaces of clusters.

The difference with respect to simple factors ofS(α) is that, in this case, the reduction
process requires the overlap of external contours only; taking into account that internal
contours are external to some further atoms, the advantage is evident (also consider
formula (3)). The example in figure 3 shows the efficiency of the reduction process in the
two cases. We stress that the reduction does not consist in erasing the common lines, since
the result of such a cancellation might be a non-partition. Moreover, in the algorithmical
implementation of the process, all is made easier: stocking and handling of partitions,
computation of distances, etc. Finally, we observe that our choice is, in a sense, the
‘natural’ one when configurations are produced through a rule involving next neighbours.
Indeed, not only are the borders the sole sites that are active in the evolution (also simple
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Figure 3. Two partitionsα andβ (a); their maximal common factorσ = α ∨ β (b); the result
of reduction using simple factors (c), or elementary factors described in the text (d).

Figure 4. Mean magnetization versus energyE in the Q2R system, for several initial conditions.

factors reflect this feature) but, in addition, an external contour does not see what happens
inside: to activate the reduction for the positive component of the contours, independently
from the internal subconfigurations, seems therefore the proper choice.

In numerical simulations, one has: (1) to recognize and classify the boundaries of both
partitions α and β (this is equivalent to defining elementary factors); (2) to build their
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Figure 5. Time averages of entropy versusE for the Q2R system. The stabilization times used
to get asymptotic values vary from 40 000 up to 450 000 steps.

greatest common factorσ = α ∨ β; (3) to eliminate those factors which are not prime
with σ and; (4) to perform the product of the remaining factors, definingα′ andβ ′ as in
(4). Moreover, in order to evaluate the distances before and after the reduction, one has to
count the knots inside every atom for all partitions (reduced and not) and for their products.
Indeed, instead of direct definition (1), it is convenient to use an equivalent formula where
simple (non-conditional) Shannon entropy appears:

ρ(α, β) = 2H(α ∨ β)−H(α)−H(β). (5)

As we shall see, in most cases the reduction process will refer to partitions obtained step-
by-step from a sequence of evolving configurations. This means that whenever in the
following we speak of reduction along a trajectory, the whole process is performedat each
step (40 000 to 450 000 times).

One could object that the reduction loses its sense in the continuum limit, since the
probability of exact overlapping of boundaries goes to 0. This is true, but (apart from the
interest of intrinsically discrete processes) the meaning of this approach consists precisely in
the fact that it simulates what happens, in general, treating the similarity of configurations
within a finite degree of precision. To improve the precision means to increaseN , in the
model sketched above, without increasing the number of atoms.
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Figure 6. Standard deviations of the entropy (values along the orbits used to compute the time
averages of figure 4) versusE.

4. Dynamics, partitions and complexity

Once the factorization and reduction formalism has been established, the approach to
complexity is exactly the same as in the one-dimensional case: starting from an initial
configurationa(0), a dynamical systemT inM , defines the sequence{a(t)} at discrete times
t = 0, 1, 2, 3, . . . , by a(t) = T a(t − 1) = T ta(0). The mapping8 : S → Z produces the
corresponding sequence{a(t)} of partitions byα(t) = 8(a(t)). The implicit definition of the
dynamical system̃T in Z means, of course,8◦T = T̃ ◦8 andα(t) = T̃ α(t−1) = T̃ tα(0).

The sequence{α(t)} is the actual object of our analysis. Several time series may be
calculated on it. We shall consider for instance (but not exclusively) the following quantities.
• The entropy of the partitions,H(t) = H(α(t)) which measures the complicacy of

every single partition taking into account the distribution of the cluster measures, not their
shapes.
• The entropyS(t) = H(σ(t)) of the intersectionσ(t) = α(t) ∨ α(t + 1) between two

next partitions which gives the degree of their overlapping.
• The distanced(t) = ρ(α(t), α(t+1)) between the two next partitions which measures

how much they distinguish from each other, and in this case relative shapes are relevant.
• The distancedr(t) = ρ(α′(t), α′(t + 1)) between thereducedpartitions; possibly, the

previous quantity is amplified by the erasure of common factors. The very definition of
factors is therefore important here.
• The amplification factor,A(t) = dr(t)/d(t) which measures the relevance of the
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Figure 7. Time averages of distance between next configurations versusE.

reduction process.
There are several meaningful combinations of these quantities. For instance, the bare

entropy may be used to weight other observables, such asS(t). The coherence and reliability
of the results may be tested by varying the parameters in numerical experiments, e.g.
by computing time series with time intervals longer than one step, or by examining the
dependence on initial conditions and the length of transient regimes, etc. Experience on one-
dimensional processes [2] tells us that, through usual statistical operations (time averages,
standard deviation, Fourier analysis etc), the whole set of observables can provide a rich
pattern of information on the process, even if a single one of them may be misleading in
some circumstances.

5. The microcanonical spin automaton

This apparatus has been tested, as in the one-dimensional case, mainly on cellular automata,
whose configuration spaces fit the features sketched above. We shall report some results
of numerical simulations on the Q2R automaton, a well known model simulating a
microcanonical spin system. These experiments are intended as a check of the reliability
of the partition formalism, not as an exhaustive study on spin systems. In this spirit, we
omit the results involving the Fourier analysis of the time series; the onset of correlated
complexity on spatial and temporal bases requires a discussion beyond the limits of a simple
check. For instance, we should introduce comparisons and references to the so-called self-
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Figure 8. Standard deviations of the distances along the orbits versusE.

organized criticality. All this will be presented elsewhere.
For a review on complexity versus phase transitions and underlying problems, see

[5–11] and references therein. For general information on the Q2R automaton, see [12–14].
We only recall that the deterministic rule, which applies separately to the even and odd
sublattices, forces a knot to flip (exchanging values 1 or 0 for spin up or down) if and only
if the sum of the nearest neighbours is 2. This means 0 transfer of energy. Consequently,
the energyE defined by

E = 1

4N2

∑
i,j

∑
〈l,k〉
|xij − xlk| (6)

where〈l, k〉 are the first neighbours toi, j , is a constant of motion. The magnetization is

M = 2

N2

∑
i,j

xij − 1. (7)

It is well known that, because of the finite size of the lattice, a proper critical energyEc is
not defined, and nevertheless it is possible to observe a sort of phase transition in a band
around a valueE0, empirically defined by the flexus in the magnetization curve going from
definitely positive or negative mean values, to the mean value 0. In our units, where the
maximum of energy is 1, this valueE0 is 0.175±0.005, the transition band ranges from 0.11
to 0.25 (figure 4). It is also known that for an infinite lattice the correlation length diverges
at the transition, with the onset of a fractal structure of clusters. This behaviour (within the
finite-size approximation) may be observed in the band, and may also be partially checked
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Figure 9. Mean value of the amplification factor versusE.

through visual inspection; the configuration patterns are well known and easily available
(see e.g. [7, 14]).

We recall that the maximum of energy(E = 1) corresponds to a regular chessboard,
therefore simulations lose their meaning in this limit, even the onset of ‘chess-like’
antiferromagnetic domains could be an interesting point in further studies. In order to
avoid misinterpretations, we shall run experiments up toE = 0.80.

Below or above the transition band, ordered and chaotic behaviours are expected,
respectively. At low energy, order means dependence on the initial conditions, and the
presence of periodical configurations. This behaviour has indeed been found, but in the
following diagrams we do not show a large sample of results forE < 0.1, where at every
energy one should consider a whole (and, for actual purposes, non-interesting) distribution
depending on the initial values. As for chaotic behaviour, for a deterministic finite (and
therefore periodic) cellular automaton this notion requires some clarification. It could be
intended, for instance, as ‘damage spreading’, referring to the growth of a tiny perturbation.
Moreover, in general, it could mean that, for all relevant observables and for evolution times
sufficient to obtain stabilized averages, there is a (more or less perfect) coincidence with the
results given by a random automaton (i.e. an automaton whose sites evolve independently
from one another according to a probabilistic law). This is what we mean by chaotic. In
particular, looking at configurations at high energy, chaos implies the vanishing of large
structures and the local instability of fine structures.

Numerical simulations have been performed on a Silicon Graphics SG1 Indigo2–
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Figure 10. Zoom of the previous figure.

R4400 XL, and on a Digital AXP 600 5/266. The size of the lattice in most experiments
has beenN = 100. To get asymptotic (i.e. well stabilized) values in the time averages and
standard deviations along the trajectories, orbits have been computed up to a maximum time
tmax depending on the initial conditions, since the transition values of the energy require
longer times. In the following, reporting time averages, we omit to notetmax explicitly.
Some further information is therefore necessary.
• Out of the transition band, a typical value istmax= 40 000 steps, large enough to give

an excellent stabilization, but in the purely chaotic situation eventmax= 8000 would have
been sufficient. Stabilization means that longer runs do not improve anything, i.e. error
bars would remain within the circles of the figures we shall present. Moreover, the results
would be qualitatively clear even with half-time.
• In the transition band aroundE0, there occur fluctuations on much longer timescales.

Standard deviations are particularly sensitive to such fluctuations. We get a good
stabilization in the previous sense usingtmax from 150 00 up to 450 000 steps.
• The possibility of further fluctuations on a much greater timescale cannot be excluded.

However, by observing the evolution of our diagrams, we see that the evidence of our
conclusions does not weaken with time. Therefore, we may have some confidence that
they are reliable, independently of the possibility of changing the order of magnitude in the
computation runs.
• Obviously, the occurrence of these fluctuations is in itself a complexity indicator,

confirming the expected difference with respect to a purely chaotic behaviour.
Initial configurations have been chosen through a random number generator, but, in order
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Figure 11. Zoom of standard deviations along the orbits of the amplification factor.

to shorten the stabilization time, a transient ‘free’ evolution, before starting the averaging
on various observables, is very useful. This transient is also much longer, as expected,
in the transition band. Indeed, a random generator does not spontaneously produce fractal
structures, as those slowly shaped by dynamics. For uniformity the same long transient of
100 000 steps has been used, even if unnecessary.

Figure 5 shows the time-averaged entropy〈H(t)〉, as a function of the energyE. After a
quasilinear growth forE < 0.6, it begins to slow down (remember that there is a maximum,
H = 2 logN , corresponding to the chessboard). A small bump around the transition could
be noticed, but the general behaviour is very regular.

The standard deviation of the same quantity along the orbit (figure 6) is more interesting:
there is a first maximum, a very neat peak, coinciding with the transition, and another
smoother maximum after the exit of the transition band. Since the standard deviation is
an index of time fluctuations, the locations of these maxima strongly support the idea of
a particularly complex behaviour in the band, while the distinction between them, likely
related to the breakdowns of magnetization and fractality, respectively, is not clear to us in
its dynamical details. As to the decreasing behaviour with the onset of chaoticity, it may
be easily interpreted with reference to the smaller and smaller size of the evolving atoms,
providing stabilization in time, i.e. only small fluctuations of entropy.

Figures 7 and 8 show averaged distances〈d〉 and their standard deviationsSD(d), i.e.
the diagrams for distances corresponding to the two previous ones. Distances grow linearly,
in figure 7, from the ordered domain, where the magnetization is definitely non-zero, up to
the transition band. This simply says that the relative dissimilitude between configurations
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Figure 12. Zoom of the amplification (ratio) between standard deviations referring to reduced
and non-reduced distances (the denominator is figure 7).

increases with energy. But, since the energy depends on the length of the cluster boundaries,
it is a non-trivial information that such a nonlinear functional inZ as (1), based on the atom-
intersections areas, dependslinearly on this length in the time average. Hereafter the growth
slows down and the maximum is reached justafter the breakdown of the fractal structure.
The final decrease may be ascribed to the fragmentation into smaller and smaller atoms:
this fragmentation indeed makes more and more similar the configurations, notwithstanding
their growing mobility.

In figure 8, the peak is nearby the end of the strictly linear growth of figure 7,
within the transition band but after the empirical valueE0. One can read here that, up
to the establishment of the fractal structure, the fluctuations of similarity between next
configurations also increase very rapidly. Once again, the subsequent decrease can be
interpreted as a stabilization effect due to the chaos itself. Therefore, the shift of the
maximum with respect toE0 is likely due to the balance between fluctuations in time
(remember that the mean distances are still growing here) and the fragmentation of cluster
in the fractal regime, the process which contributes to the stability in the time behaviour.

We do not report diagrams for the reduced distances, qualitatively identical to the
previous ones. However, the reduction process carries relevant information on the cluster
dynamics. Consider for instance, in figure 9, the amplification in the mean:

Ā = 〈dr〉/〈d〉 (8)
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Figure 13. Mean magnetization versus temperature in the canonical system, to be compared
with figure 4.

i.e. the ratio between averaged distances (reduced over non-reduced ones). Even if the
reduction is very small, we can clearly distinguish a first maximum in coincidence, once
again, with the transition, just afterE0. Then, up to the establishment of the full chaotic
regime, there is a slow decrease, and finally a new rapid increase. This last growth
phenomenon, even if impressive, is in a sense trivial, since it may be related to the
abundance of small contours, the easiest ones to be reduced. In contrast, the first part
of the diagram, shown as a zoom in figure 10, is not obvious: starting from the ordered
regime(E = 0.1), the first light decrease means that the mobility of contours grows, at the
beginning, in such a way to lower the reduction probability. But almost immediately the
balance is inverted. Evidently, the gain due to the reduction can grow only if configurations
are not too poor. Up to the birth of large clusters, the growth of the amplification factor
means that the balance between contour mobility and richness of possible configurations
is such that the contour overlaps increase. The maximum is again coherent with the full
establishment of the transition, just afterE0. Then there is another inversion: the clusters
mobility and the relative abundance of long contours progressively restrain the reduction,
up to the disintegration of large clusters. What happens there is clear from the previous
figure. Note that the same pattern holds for the time average of the amplification factor,
producing an almost identical figure which we do not report.

Even if the numerical range is narrow, the same peak appears in figure 11 (we directly
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Figure 14. Standard deviations for the entropy values along the orbits versus temperature for
the ‘canonical’ system (to be compared with figure 5).

zoom in on the interesting energy range). It gives the quantity

SD(A(t)) ≡ SD(dr(t)/d(t)) (9)

i.e. the standard deviation of the amplification factor along the orbit. This means that,
coherently with the reduction in the mean, during the fractal phase of configurations the
reduction process also undergoes a maximum for fluctuations in time. In terms of cluster
behaviour, we observe that, according to the rule, only the contours may contribute to
dynamics. But in the presence of big clusters, small fragments may sever, and such
fragments of one or two sites do not evolve in the next step. Therefore the corresponding
atoms are erased by reduction. The intermittency of such a reduction mechanism is
responsible for large time fluctuations of the amplification factor.

It is also interesting to observe in figure 12 the diagram of

SD(dr(t))/SD(d(t)) (10)

i.e. the ratio of the standard deviations of distances (reduced over the non-reduced one).
Ratio (10) is not, as the previous one, a measure for the instability of the amplification
factor, but as the amplification factor of the time instability of distances. The fact that this
quantity is slightly greater than 1 for all energies simply means that ‘useless’ reduced factors
work to stabilize the configurations, as expected; but we see in addition that the maximum
of this effect is attained within the transition, and the coincidence of the peak withE0 is
striking.
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Figure 15. Standard deviations of entropies of microcanonical (empty circles) and canonical
(full circles) systems versus energy.

It is a truism that the features listed above depend on the dynamics, but a doubt naturally
arises: they could strictly depend on the Q2R evolution rule, having nothing to do with the
transition from order to disorder in magnetic lattices. Therefore the experiments have been
repeated for another automaton, using the Metropolis evolution rule, i.e. a probabilistic
dynamics providing a description of the spin lattice in the canonical formalism (see e.g.
[14]). As in the previous case, a single evolution step consists of a complete updating of
the lattice. The transition band (around a pseudo-critical temperatureT 0 = 1.125) is sharper
than in the Q2R case (see figure 13). Also, the transient evolution necessary to reach a
steady dynamics is drastically shortened.

It is noteworthy that, at least qualitatively, nothing changes in most of the diagrams we
have presented (apart from the obvious substitution of energy with temperature), and the
clearness of indications is generally improved. See for instance in figure 14, corresponding
to figure 6, the diagram for the entropy standard deviation. The two-maxima structure is
very well preserved, and the coincidence of the first peak withT 0 is particularly impressive
(compare with figure 13). A further illustration of the qualitative overlap of the results may
be seen by displaying the entropy of figure 14 as a function of the mean energy, instead
of temperature, in such a way to have a direct comparison between the two systems; this
appears in figure 15.

This answers the critic: the robustness of the results with respect to deeply different
evolution rules seems to indicate that the description of the transition phenomenon is accurate
and reliable.
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Of course, there are also some differences: the new evolution rule does not only involve
the contours. This has a certain influence on the reduction process, especially at low
temperature (with respect to the previous low-energy case). Small atoms on a uniform
background, corresponding to one or to two knots, tend to be stable in the Q2R evolution,
instable with the new rule. Therefore they are reduced in the former case but not in
the latter. For temperatures belowT 0 this implies some minor modifications of diagrams
corresponding to those in figures 9 and 10. On the other hand, this confirms the sensitivity
of our indicators to the details of the shape dynamics.

Once again, as noticed for one-dimensional systems in [2], spatial ‘difficulty in
description’ (fractality) and dynamical instability seem structurally related, as confirmed
by extremely long fluctuations during the transition (the appearance of 1/f -noise, stressing
this point, will be discussed elsewhere). These features corroborate the idea of a maximum
of ‘complexity’ during the transition in terms of shapes dynamics. Since the very meaning
of complexity is often difficult to establish, a regular presence of the phenomena we are
discussing could be used, in unknown dynamical processes, to define, test or characterize
their complexity.

6. Conclusion

In conclusion, checks confirm the reliability of the approach based on rational partitions, in
the particular form we have introduced here, to study the appearance of complex phenomena
in two-dimensional discrete models.
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